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Prob lems  re la ted  to exci tat ion and propagation of nonlinear cyl indr ica l  and spher ica l  waves in media 
with weak d i spers ion  occur  in many branches  of theore t i ca l  and applied physics .  Exci tat ions of this kind are  
observed,  for  example,  in plasmas [1-3], on the surface  of a shallow fluid (tsunami waves,  etc.} [4, 5], in gas-  
dynamics  [6], in nonlinear la t t ices ,  etc.  The evolution of the corresponding one-dimensional  p rocesses ,  
descr ibed  by planar waves by means of the K o r t e w e g - d e  Vries  (KdV) equation, has been studied in much 
detai l  [7]. In r ecen t  y e a r s  s eve ra l  at tempts have been made at general iz ing this equation for  descr ib ing non- 
planar waves with axial or cen t ra l  s y m m e t r y  [5, 8-11]. Severa l  par t ia l  solutions were  obtained of the gen- 
e ra l ized  KdV equation, descr ib ing  quas is ta t ionary  so l i t a ry  pulses  and soli tons [2, 3, 5, 8-11], and were observed  
in a number of exper iments  [1-4]. The present  paper is devoted to fu r the r  study of cyl indr ical  and spher ica l  
waves;  s e v e r a l  new approximate solutions are  obtained, taking into account loss effects  in the medium, seve ra l  
eases  involving some prevai l ing fac tors  (nonlinearity,  d ispers ion ,  geomet r ic  divergence)  are  worked out, and 
the resu l t s  obtained are  compared  with exper imenta l  data.  

1. The boundary-value  problem for  the KdV equation, general ized to the cases  of motion with axial and 
cen t ra l  symm e t r y ,  can be r ep resen ted  in d imensionless  var iables  in the fo rm [8, 9] 

Ou/Or -4- ~uOu/O~ -~ e2O3u/Ox 3 + ~u + S• + • = 0, 
u(0, x) -= ](~), (1.1) 

where  T=r  -- t ,  t is t ime ,  r is the rad ia l  coordinate measured  f ro m  the boundary of the surface  at dis tance ~r 
f r om the center ,  u is the mass  velocity of the medium,/~, e, • are  smal l  p a r am e te r s  cha rac te r i z ing  the non- 
l inear i ty ,  d ispers ion ,  and low-frequency dissipation,  respec t ive ly ,  S is a coefficient  having the values 0, 1/2, 1 
fo r  the cases  of planar,  axial,  and cen t ra l  symmet ry ,  r espec t ive ly ,  and f is a given positive finite function of 
amplitude unity. In this equation we r e s t r i c t  ourse lves  to models of f requency-independent  losses .  

We der ive  the integral  consequences of Eq. (1.1). F o r  this we multiply Eq. (1.1) by u k-1 (k =1, 2) and 
integrate the resu l t  over  f r o m -  ~ to +~o; taking then into account the condition of r e s t  at infinity, we obtain 

Ih (r) = Ih (r.) r (r, r.),  k = t, 2. (1.2) 
c o  

The quantity Ih = ,t' u~ (v, r)dr is the total  momentum of motion of the medium for  k =1, and the total  energy for  

�9 k =2. In what follows this  quantity plays an important  ro le  in construct ing approximate solutions and explaining 
the nature  of the i r  r dependence.  The function ~v(r, r , )  is defined by the equation r r . )  =[1 +~(r-r,)] -s. 
e -~ ( r - r * ) ,  where r .  is some fixed value of separat ion.  We note that for  X =0 Eq. (1.1) in the cyl indr ical  case 
S =l/2 is s imi la r  to the ord inary  KdV equation, it possesses  an infinite set  of ir~egrals of motion [12], and can be 
r ep resen ted  in the Lax fo rm  with cor responding  LA pairs  [13]. 

We rep lace  var iables  in the KdV equation (1.1). We introduce new var iables  U, x by means of the r e l a -  
t ions U = u r  0) 

x = ~S~( r ' ,  O)dr' = ~, ( 1 / t  + x r - - 1 ) ,  S = . � 8 9  

o / 4  ln ( l  + ur), S = t 

fo r  • = 0, and 
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for  X r 0. Here  r is the probabi l i ty  in tegral ,  and Ei  is the in tegra l  exponential  function. In the new va r i ab les  
Eq. (1.1) is reduced to the f o r m  

ev u o v  1 e ~ v = 0 ,  ~ V~(* ,07  (1.3) 
o-%- + o~ + f-ix) ~a 

It hence follows that  the effect ive s imi l a r i t y  c r i t e r ion ,  exp re s sed  by the ra t io  of nonlinear to d i spe r s ion  effects ,  
is in this case  the quantity fl2(x), which is not constant.  This  fact  causes  a s t rong  dependence of the solution of 
the boundary-va lue  p rob lem on dis tance ,  unlike the p rob lem of p lanar  s y m m e t r y ,  where  the s t ruc tu re  of the 
wave pa t te rn  is de te rmined  by the constant  f12 [7]. 

2. Consider  f i r s t  the case  in which fi2<<1 at the boundary of the sur face ,  and let for  s impl ic i ty  • =0. The 
nonlinear t e r m  in Eq. (1.3) can then be neglected, and the genera l  solution of the l inear ized equation (1.3) is [7] 

u (r, T) -- ~--~ (3~.~r) - 7  (1 + xr) - s  A! ~ l ( ) d~'. (2.1.) 

As shown in [7], for  asympto t ica l ly  la rge  r ,  r the solution (2.1) for  initial  per turba t ions  with nonvanishing a r ea  
is e x p r e s s e d  in t e r m s  of the Ai ry  function: 

u(r,z)...r_(S+~)Ai(~), (2.2) 

whence it follows that  the wave ampli tude d e c r e a s e s  as ~ r - ~  s in the cyl indr ica l  case  and ~ r-42 in the sphe r i -  
cal  case ,  and the c h a r a c t e r i s t i c  length i nc rea se s  as ~ r ~ ,  while the f i r s t  incoming wave has the l a rges t  ampl i -  
tude.  We note that the approximate  solution (2.2) of the l inear ized  equation (1.3) can be obtained f r o m  s imple  
cons idera t ions  of d imens ional i ty .  F o r  this  it is n e c e s s a r y  to use the conserva t ion  law (1.2) with k =1. Using 
the ene rgy  conserva t ion  law with k---2, we obtain a different  s e l f - s i m i l a r  solution whose durat ion va r i e s  with 
d is tance  in the s a m e  away as for  Eq. (2.2), and whose ampli tude fal ls  off according to the weaker  law ~ r (S+g  6). 
On the bas i s  of these  da ta  one can obtain the law of var ia t ion  of the parameter /~2  with dis tance,  de te rmined  by 
the local  value of the product  of the wave ampli tude by the square  of its intensi ty at each moment  of t ime .  Thus,  
for  the f i r s t - t y p e  solution/3 ~ r - ( ~ ) ( S - ~ ) ,  and for  the second 5 ~r-(1/~)(S-1/a) As seen  f r o m  the express ion  for  
/~, in both cases  for  S ~ 0 this  p a r a m e t e r  does not inc rease  with d is tance ,  so that an init ial ly l inear  wave always 
r e m a i n s  l inear .  We note that in the p lanar  ease  S =0 the p a r a m e t e r / 3  inc reases  with dis tance for  both types  of 
solution, so that  a wave with a r b i t r a r i l y  sma l l  amplitude and nonvanishiag a r ea  always becomes  nonlinear.  F o r  
a converging wave this  p a r a m e t e r  i nc rea se s  with dec reas ing  r ,  except  for  the case  S =~/2 when the second type 
of solution leads to an inc reas ing  role  of nonlineari ty which, s t a r t ing  at some dis tance,  becomes  substant ia l  
for  fu r the r  desc r ip t ion  of the wave.  Analytic e s t i m a t e s  [14] show that usually the ampli tude of c y l i ~ l r i c a l w a v e s  
d e c r e a s e s  near  the per tu rba t ion  source  as ~ r - g  3, in ag reemen t  with the energy  conserva t ion  law, while at la rge  
d i s t ances  the solution (2.2), d e c r e a s i n g  as ~r-r 6, dominates .  

It mus t  be noted that the r e s u l t s  obtained he re  r e f e r  to the l inear ized KdV equation, which is, however ,  
not always valid for  desc r ib ing  axial ly  s y m m e t r i c  waves .  The invalidity of th is  equation at shor t  d is tances  f r o m  
the cen te r  is obvious by the s t rong  enhancement  of the role  of the las t  t e r m  in Eq. (1.1), while by the der iva t ion  
of (1.1) this t e r m  is r e l a t ive ly  smal l .  This  equation also becomes  invalid at la rge  d is tances ,  s ince it de sc r ibes  
the leading par t  of the wave (the low-f requency  spec t r a l  region),  containing a re la t ive ly  sma l l  port ion of the 
ene rgy  of the whole wave.  Most of the energy  is contained in the high-frequency wave t ra in ,  and is usually 
desc r ibed  by an asympto t ic  calcula t ion of F o u r i e r - B e s s e l  in tegra ls ,  without using the s ingle-wave approxi -  
mat ion and being an exact  solution of the or ig inal  p rob lem in the l inear  s t a tement .  

Thus,  the r e s u l t s  obtained here  can be cons idered  as in te rmedia te  asymptot ic ,  valid at modera t e  d i s -  
t ances  f r o m  the center~ As an example ,  Fig .  1 shows the r e su l t  o f )  numer ica l  calculat ion of c i r cu l a r  waves  
f r o m  an axial ly s y m m e t r i c  source ,  having the f o r m  u(0, r )=U0e-(r /a)2 ,  a =2. The calculat ion was pe r fo rmed  on 
the bas i s  of the l inear ized  equations of shallow wa te r  by reduct ion to F o u r i e r - B e s s e l  in tegra ls ,  but at some 
dis tance  f r o m  the center ,  c h a r a c t e r i s t i c  of a per turba t ion  sca le  much s m a l l e r  than the radius  of the c i r cu l a r  
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wave,  its evolution can be desc r ibed  by Eq. (1.1) with • = 0. As seen f r o m  Fig.  1, initially (up to r-~ 2.5a), when 
d i spe r s ion  can be neglected,  the wave ampli tude d e c r e a s e s  as ~r-~/2. Then, f r o m  r~- 2.5a to r -  ~ 8a the ampl i -  
tude va r i e s  as r-~/3, in a g r e e m e n t  with [14]. At r -  8a a t r ans i t ion  occurs  to the law r - ~  6, which is valid u p t o  
r ~  60a. At long d i s tances ,  f inally,  the wave head d e c r e a s e s  as ~ r -  1. Thus,  it is seen  that  the d e c r e a s e  in the 
wave ampli tude at the port ion f r o m  r ~  1.5a to r -  60a can be desc r ibed  within the s ing le -wave  equation (1.1) 
and is explained by the laws der ived in this sect ion.  

3. Cons ider  now the case  of a boundary-va lue  p rob lem (1.1), for  which nonlinear effects  dominate over  
d i spe r s ion  ef fec ts  at shor t  d i s tances  f r o m  the sur face  boundary.  The d i spe r s ion  t e r m  in (1.1) can then be 
neglected,  and within the r emain ing  equations,  desc r ib ing  s imple  waves  with damping and d ivergence ,  one can 
find exact solutions of the f o r m  

c~(r, O) ~(r ' ,  0) dr' , (3.1) 
0 

where  the function f is given by the boundary condition. The dis tance dependence of the wave amplitude is found 
f r o m  the re la t ion  

ueX,(1 ~r xr) s = const, (3.2) 

which follows f r o m  (1.2) for  k =1. As seen  f r o m  Eq. (3.2), the ampli tude of weak waves  va r i e s  with dis tance in 
the s ame  way as l inear  waves  [s trongly nonlinear s imple  waves  a re  not desc r ibed  by Eq. (1.1), and t he re fo re  
the i r  ampli tude v a r i e s  accord ing  to a different  law [6]]. The dependence of the wave ampli tude (3.1) on u leads 
to a change in its fo rm.  The calculat ion of the d is tance  at which a bore  wave is fo rmed  and finding the height 
at tenuation laws a re  p e r f o r m e d  in the s ame  way as in the p rob lem of sound shock waves  in gases  and liquids [6], 
t h e r e f o r e  we provide he re  the main  equations without der ivat ion.  Three  types  of bore  waves  a re  poss ib le ,  as  
i l lus t ra ted  in Fig .  2, depending on the shape of the initial per turbat ion .  The following asymptot ic  equations a re  
valid for  the ampli tudes  of the f i r s t  two types:  

u N r-a14, h "  rl/4~ 

while for  the third type the var ia t ion  laws of u and A are  different:  

11 ,-,  r - 1 ,  h - - ~  6 o n s t ,  

where  A is the c h a r a c t e r i s t i c  s ize  of the bore  wave. The expe r imen ta l  data  obtained in [15] for  charge  detonation 
of 1000 kg of l i tho- t ro ty l  in shal low wate r  (with depth of o r d e r  50 em) agree  quite accura te ly  with Eq. (3.2) for  
cy l indr ica l  waves  (S =1/2) at the su r face  of the liquid without accounting for  X. F igure  3 shows the shapes  of s u r -  
face  e levat ions ,  se lected f r o m  [15], at d i s tances  8, 11.6, 15.3, 22.9, and 30.8 m f r o m  the detonation epicenter ;  
it is seen  that the wave shape is near  a t r i angu la r  bore  wave,  and by the data provided in [15] its amplitude 
changes as ~ r  -~ 

Due to the dec rea s ing  per tu rba t ion  amplitude of diverging waves  nonlinear effects  may become of the 
s ame  o rde r  as d i spe r s ion  ef fec ts  at some dis tance (if the wave scale  va r i e s  sufficiently slowly in compar i son  
with its ampli tude) .  In this  case  wave propagat ion is de ,or ibed by the complete  equation (1.1), and the s t r u c -  
tu re  of the wave pa t te rn  acqui res  a quas isol i ton c h a r a c t e r  if the las t  two t e r m s  in (1.1) are  sufficier~ly smal l .*  

*Quali tat ively the change of r eg i m e  follows a l r eady  f r o m  (1.3), s ince the p a r a m e t e r  fl2(x) is not constant .  To 
de t e rmine  the d is tance  at which there  is a t r ans i t ion  f r o m  nonlinear to d i spe r s ion  nature of the solution it is 
n e c e s s a r y  to have more  accura te  knowledge of the p a r a m e t e r  fl2(x), based  on the solution a l ready found. 
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4. Taking into account the nonlineari ty  and d i spers ion ,  s epa ra t e  c l a s s e s  of exact  solutions of Eq. (1.i) 
for  • =0 and S =1/2 were  found in [12, 13]. The nature of these  solutions is quite s i m i l a r  to the N-sol i ton  solu-  
t ions co r respond ing  to the KdV equation in the planar  case  [7], but the i r  expres s ions  a re  too awkward and in- 
convenient for  p rac t i ca l  calculat ions.  Another  approach for  finding approximate  solutions of (1.1) was used in 
[2, 3, 5, 8-10, 16] and was based on the s imi l a r i t y  of the solution of (1.1) to a planar  sol i ton if the two las t  
t e r m s  in (1.1) a re  suff icient ly smal l .  Extens ive  expe r imen ta l  s tudies  and numer ica l  calculat ions [1-5], c a r r i ed  
out for  both cyl indr ica l  and spher ica l  waves ,  showed that  in both ca se s  a decay of an initial  per turba t ion  of 
a r b i t r a r y  f o r m  into a number  of sol i tons is observed ,  s i m i l a r  to what happens in the planar  case  [7]. The sol i -  
ton ampli tude d e c r e a s e s  with d is tance  due to d ivergence  and diss ipat ion.  

Many authors  a t tempted to obtain theore t ica l ly  the var ia t ion  law of soli ton amplitude with d is tance  without 
account of d iss ipat ion.  Cont rad ic to ry  data  were  obtained in this case:  According to [5, 8, 9] the sol i ton ampl i -  
tude changes as ~ r  -S, while, according  to [10, 16], the ampli tude var ia t ion  law is s t ronge r  ~ r-(4/~) S. In our  
opinion this  contradic t ion  is explained by the fact  that  in the f i r s t  group of s tudies  the var ia t ion  of the soli ton 
durat ion with dis tance,  r e la ted  to its ampli tude,  was not taken into account.  To find the var ia t ion  laws of the 
sol i ton p a r a m e t e r s  with d is tance  we a s sume ,  as was a l ready mentioned, that the las t  two t e r m s  in (1.1) are  
smal l ,  and the solution is of the same f o r m  as in the planar  case ,  but with slowly vary ing  p a r a m e t e r s ,  the 
amplitude A and the durat ion A: 

�9 t:~,a (4.1) 
-- J 3 dr 

u = A (r)sech 2 o 
A (r) ' 

where  A(r) = 1/i2e~/pA(r)~ Using the energy  conserva t ion  law (1.2) and the re la t ion  be tweenA and A, we obtain 
A N r-(4/3)Se-O/3)x,, A ... r(2/3)se(~/s)xr. (4.2) 

It  is in te res t ing  to note that  the s a m e  law of dec rea s ing  field with dis tance follows f r o m  the exact  solutions 
[12, 13], as well  as f r o m  the s e l f - s i m i l a r  solutions found in [11]. More r igorous  solutions of type (4.1), (4.2), 
found by  means  of asympto t ic  expansions ,  were  obtained in [16]. The laws of var ia t ion  of the sol i toa  p a r a m e t e r s  
(4.2) a re  in good ag reemen t  with the numer ica l  data  r e p r e s e n t e d  in Fig.  4, where  we show the var ia t ion  of so l i -  
ton amplitude with dis tance,  calculated on the bas i s  of Eq. {1.1) for  • =0. (The s t ra ight  line ~ r  -~/~ co r re sponds  
to cyl indr ica l ,  and the s t ra igh t  line "~ r - (  "~ to sphe r i ca l  sol i tons.  F o r  compar i son  we chow by the dashed line 
the var ia t ion  law of ampli tudes  of l inear  waves  without d i spers ion ,  and the points a re  1 - [ 5 ] ,  2 - [ 8 ] ,  3 - [9 ] ) .  
The re  is also good ag reemen t  between Eqs .  (4.1), (4.2) and the expe r imen ta l  da ta  obtained with p l a sma  soli tons.  
F igu re  5 shows the d is tance  dependence of ampli tudes  of spher ica l ly  diverging sol i tons (the points 1 are  f r o m  
[2], and 2 f r o m  [3]). The e l ec t romode l ing  pe r fo rmed  by us of cyl indr ica l ly  d iverging  soli tons by means  of non- 
l inear  two-d imens iona l  LC- l a t t i c e s  led to coincidence of the data  obtained on var ia t ions  of soli ton ampli tudes 
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and durat ions with the calculated equations. F igure  6 shows the exper imenta l  data  for  d imensionless  soliton 
amplitudes (normalized to the amplitude of the input pulse) and durat ions (in microseconds) .  Unfor tunate ly , the  
other  exper imenta l  studies obse rv ingso l i tons  in plasma [1] and in water  [4] have a more  qualitative nature.  
We also note that in many exper imenta l  studies the t e r m  "sol i ton" is applied to a r b i t r a r y  so l i ta ry  waves not 
descr ibed  by Eq. (1.1), which often lends to confusion, since the pa rame te r s  of these so l i ta ry  waves vary  with 
dis tance according to  laws different  than (4.1), (4.2). The general ized damping soli ton (4.1) is not formed in- 
dependently,  and in the propagation p rocess  it emi ts  a wave packet ("tail") which can be found in the following 
approximation in construct ing an asymptot ic  solution [16]. In the planar case S = 0, X ~ 0 the "tai l"  s t ruc tu re  
was studied in detai l  in many studies in recen t  yea r s .  Here  we r e s t r i c t  ourse lves  to the express ion  for  a pulse 
"tai l ,"  which can be found f rom (1.2) fo r  k =1: 

I ,  = 2 e -(~'3)xr (l §  e - - Y  (i + ur)  -s/ '~ - -  i , 

where  A 0 is the soli ton amplitude at r = 0. F o r  large r the pulse "tai l"  equals the soli ton pulse in absolute value 
and opposes it in sign, dec reas ing  with distance according to the law I . N  _ e-(2/s)/~r r-(~ s 

The quasisoli ton solutions descr ibed  are  valid at r e s t r i c t ed  dis tances  due to the impossibi l i ty  of s imul-  
taneously "balancing" th ree  fac tors :  nonlinearity,  d ispers ion ,  and divergence.  Final ly ,  it is important  to note 
that in the absence of diss ipat ion (• =0) the solution of the zero th  approximation (4.1), (4.2) in the cyl indr ical  
case  r emains  valid until the co r r ec t ion  due to the foUowing approximation becomes  sufficiently large.  In this  
case  the ra t io  of the last  t e r m  in (1.1) to the d i spers ion  (or nonlinear) t e r m  remains  smal l  if it is initially 
small .  In the spher ica l  case  the solution (4.1), (4.2) can become unsuitable much ea r l i e r ,  since the ra t io  men- 
t ioned above inc reases  with dis tance.  The boundary of the applicability region  of this  solution is es t imated as 
ro "~ (i/e) (i2/~)3/~. F o r  r>>r 0 the solution becomes  l inear ,  and is descr ibed  by the equations of Sec. 2. 
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M I X I N G  OF A C O N T A C T  B O U N D A R Y  R E T A R D E D  

BY S T A T I O N A R Y  S H O C K  WAVES 

V. E .  N e u v a z h a e v  and V. G. Y a k o v l e v  UDC 532.517.4 

The phenomenon of turbulent mixing of the interface between two gases of different densities retarded by 
plane stationary shock waves moving from the light gas into the heavy one was discovered experimentally in [1]. 

It is shown below that within the framework of the semiempirical  models of [1-3] this phenomenon is 
determined by the size of the initial perturbations - the roughness of the interface. If the characterist ic  size 
of these perturbations approaches zero, then the width of the mixing region also approaches zero. This 
phenomenon is explained by the 5-function character  of the acceleration. 

If the acceleration varies smoothly, such as constantly, then mixing will always develop, even with in- 
finitely small roughness. The analytical dependence of the width of the mixing region on the initial roughness 
is presented. 

The interface of the gases {liquids) is unstable against small perturbations if the acceleration is directed 
from the light to the heavy gas. This instability develops for sufficiently small coefficients of viscosity and 
surface tension. 

In the semiempirical  models of [1-3] it is assumed that turbulent mixing develops simultaneously with 
the action of the acceleration, although actually the presence of viscosity and surface tension leads to Che ap- 
pearance of a finite time interval during which a gradual transit ion to turbulent motion occurs.  

i 

The known sel f -s imi lar  solutions [3-5] were obtained under the assumption of smallness of the initial 
perturbations. Actually, these perturbations may not be small. The law according to which the emergence into 
a serf-s imilar  solution with constant acceleration occurs is established below. A mild "forgetting" of the initial 
i r regular i t ies  of the surface was unexpectedly discovered. 

1 .  A p p r o x i m a t e  M o d e l  

We will consider a diffusional model of turbulent mixing in the approximate formulation of [5]: The fluids 
are incompressible, while the turbulent velocity v is assumed to be a function of time only. Then the process 
of turbulent mixing will be described by two equations for two unknowns (the density p of the mixture and the 
character is t ic  turbulent velocity v), 

3p ~O~p. 
7 = lv --az~, (I.i) 

t d v  g v v 3 (1.2) 
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